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Tracking unstable phenomena in chaotic laser
experiments: Extending the region of stability in
a multimode laser

Zelda Gills, Christina Iwata, and Rajarshi Roy, School of Physics, Georgia Institute of
Technology, Atlanta, GA 30332, USA
Ira B. Schwartz and Ioana Triandaf, US Naval Research Laboratory, Special Project for
Nenlinear Scicnce, Code 4700.3, Washington, DC 20375-5000, USA
Telephone: 202 404 8359, Email: schwartz@nls4.nrl.navy.mil

A new algorithm retains control of a chaotic laser over a large range of parameter values. Experi-
ments show an order of magnitude increase in the region of stability in a multimode laser.
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Tracking unstable phenomena in chaotic laser experiments:
Extending regions of stability in a multimode laser

Zelda Gills, Christina Iwata, and Rajarshi Roy, School of Physics, Georgia Institute of Technology, Atlanta,
(GA 30332, USA .
Ira B. Schwartz and Ioana Triandaf, US Naval Research Laboratory, Special Project for Nonlinear Science,
Code 4700.3, Washington, DC 20375-5000, USA
Telephone: 202 404 8359, Email: schwartz@nlsd.arl.navy.mil

Recently, experimental systems which exhibit chaos have been controlled using techniques such
as OGY [1] and the related occasional proportional feedback, OPF [2]. The methods have been
able 1o stabilize both low dimensional experiments, such as electronic circuits [2] as well as high
dimensional multimode chaotic lasers [3]. Controlling a chaotic systemn consists of stabilizing an
unstable steady state or periodic orbit by having the system perform small amplitude fluctuations
about some fixed parameter value. The OPF method is implemented by choosing the fluctuations
so that the system is brought closer to the unstable orbit of interest. In the OGY method, the fluc-
tuations are chosen so that the iterates fall on the stable manifold of the unstable orbit, thus keep-
ing the dynamics in the neighborhood of the point of interest in phase space. Both methods are
clearly related [4].

One common drawback of the control method is its sensitivity to dc parameter changes. That is, if
the dc value of the parameter is changed systematically, control is retained only in a small neigh-
borhood of parameter space [S]. This is due to the fact that the point about which the system is
controlled changes as a function of parameter. If the control point is not changed when the param-
eter changes, control is lost. However, in [5] it was shown how to move the control point so that
the error between the control point and true fixed point is minimized. The basic idea was to ob-
serve that when the control point is exactly equal to the fixed point, the mean value of the control
fluctuations is zero. If the control point is moved away from the true fixed point, the mean changes
linearly. Therefore, if the dc parameter value is changed, then the control point is changed by
minimizing the mean of the fluctuations. One is thus able to track the unstable orbits over large re-
gions of parameter space. It is also possible to cancel the effects of parameter drift in experiments
automatically using this technique.

A diode pumped solid state Nd: YAG (neodymium doped yttrium aluminum gamnet) laser with an
intracavity KTP (potassium titanyl phosphate) crystal displays chaotic fluctuations of the outnut
intensity for certain operating parameter regimes [6]. An OPF technique for the dynamical control
of the chaotic laser system was demonstrated recently. In this technique, the output is detected by
a photodiode, the output from which is amplified with a variable gain and offset. The signal is
then sampled periodically, at a period determined by an external synchronizing pulse generator.
The sampled signal is input to the laser diode driver for a time short compared to the sampling pe-
riod. For a description of the control technique, we refer the reader to [3]. There, we demonstrated
that it is possible to stabilize a wide variety of periodic orbits of the chaotic laser system.

For 11 particular set of parameters, it was found that the laser operated 1n stable steady state very
near threshold. As the pump power was increased, the laser displayed a sequence of periodic and
chaotic behaviors. Fig. 1 shows the average value of the Nd: YAG laser output (relative units) at
1.06 p as a function of the d.c. bias. The symbols used in the plot denote the steady state, periodic
and chaotic behavior. Application of the OPF technicue [3] allows us to stabilize the laser even
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when the steady state becomes unstable. Fig. 2a is an example of chaotic output from the laser
without application of the control signal. Fig. 2b demonstrates the stabilization of the chaotic dy-
namics to a steady state when the control circuit is activated. The stabilized steady state intensity
has the same average value as that of the chaotic output. The control signal fluctuations are ex-
tremely small and difficult to distinguish from noise in the digital oscilloscope traces.

Stabilizing and tracking the unstable steady state required that the control signal be adjusted for
zero d.c. offset (from the preadjusted bias value of the diode laser driver), in accord with algo-
rithms in reference [5]. Fluctuations in the pump power produced by the control circuit were also
minimized by adjusting the time interval of application of the control signal and the frequency of
sampling of the laser output. It was found that steady state could be maintained over a range of
several kHz of the sampling frequency, which was nominally fixed at 80.7 kHz. In Fig. 3, we
show the results of tracking the laser output in the steady state, using control optimization proce-
dure described above. The laser displays periodic, chaotic, and steady state behavior when control
is not applied over the same range of d.c. bias values (Fig. 1). The chaotic or periodic oscillations
are typically a hundred times larger than the intensity fluctuations about the steady state observed
with optimized control parameters, as is seen from Figs. 2(a) and (b).

We have further shown that when control is not optimized for each d.c. bias value, steady state be-
havior can only be maintained over a very small range of pump power (Fig. 4a). In these measure-
ments, control was optimized at a d.c. bias of 272.9 mV to achieve steady state behavior. The
average d.c. bias was then decreased, keeping all control parameters fixed. The laser almost im-
mediately displayed periodic and chaotic pulsations. The corresponding control signal standard
deviations are shown in Fig. 4(b). Control without tracking thus provides a stable steady state only
over a very limited range of pump power.

A comparison of Figs. 1 and 3 immediately shows that the tracking rechnique allows us to obtain
about fiftcen times more output power in a stable steady state for a given setting of the laser pa-
rameters. The stabilized steady state values are very close to the average values for the fluctuating,
unstable laser output for the same d.c. bias. Steady state operation achieved in this manner is ex-
tremely stable for long periods of time (many minutes).

Numerical computations are in progress to illustrate both control and tracking procedures. {7]
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Two Dimensional Analysis on Nonlinear Interferometer
and Decay of Spirals

H. Adachihara and H. Faid
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Batiment 213, Université Paris-Sud 91405 Orsay. France

Abstract

Our two dimensional analysis on Vorontsov’s nonlinear interferometer model
reveals how to construct complex patterns with unstable eigenmodes and
how spirals decay into petals.




Akhmanov, Voroutsov et al. have recently observed various, fascinating
spatial patterns in their experiments with a nonlinear interferometert-=*
Their mathematical model is found to agree with experiments. Yet their
one dimensional analysis treats only siiaple petal patterns and not more
complex, truly two dimensional patterns. The model equation for the phase
U(z,y.t) of the beam is given by

Uy + U = DV = Ko(l + ycos(RU = o))

where 7(x 0.12sec) is the relaxation time of the nonlinear response, Al
the nonlinear (Kerr) strength, y the mirror loss, ¢y the phase shift in the
cavity and R the rotation operator RU(r,8,t) = U(r,8 + A, t) in the polar
coordinates. This equation is linearised around the plane fixed point 7 and
its stability to a x-dependent perturbation is analysed using cwo dimensional
Fourier cosine or sine modes.

Our two dimensional linear stability analysis gives stable/unstable spa-
tial eigenmodes which correspond to stable/unstable manifolds. At the pa-
rameters A = 54°, D = 0.001 and K¢ = 2.2, for example, the full model
generates from a cosine perturbation a steady state of four rotating and ten
stationary petals (Fig. 1). Our analysis predicts that at the same param-
eter values, one real and a pair of complex eigenvalues become unstable,
which translates into a growth of ten stationary and four rotating petal
eigenmodes (Fig. 2). At Ko ~ 2 which seems typical in the experiments,
our linear theory may be sufficient to determine overall patterns that finally
emerge.

Rotating spirals which Vorontsov and et al have observed in the exper-
iments may eventually unwind and reduce themselves into simpler petals
due to the radial diffusion. With a strong diffusion, this unwinding process
occurs quickly as seen in Fig. 3 where D = 0.01, about 20 times larger than
the usual value. Under certain assumptions, the deformation of spirals may
be expressed in the following diffusion equation for the phase shift ¢(r.t) of
the rotating spiral f(# + wt - ¢(r.t))

, D 1
b= 2 (00 + 20 ) 0
where (' is some constant. With the parameter values of Fig. 3, ¢ turns
out to be negative. Therefore, o — 0 as t — +00, ie., spirals decay into
petals with no r-dependent phase variation. With much less diffusion, the
process may occur only slowly.
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Collapse of a Transverse Mode Continuum in a Photorefractive Oscillator
Mark Saffman, Don Montgomery, and Dana Z. Anderson

Department of Physics and Joint Institute for Laboratory Astrophysics
University of Colorado
Boulder, Colorado
80309-0440
telephone: 303-492-5202

ABSTRACT

Collapse of a transverse mode continuum into a near-Gaussian single mode in an
imaging photorefractive ring oscillator is predicted numerically and observed
experimentally.
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The transverse field profile in oscillators
with nonliinear media is determined by the
interplay between the nonlinearity and the
resonator geometry. In typical laser
resonators the resulting field is a
superposition of low order Hermite-
Gaussian modes. However, therc are some
oscillator geometries, such as the self-
imaging ring resonator{1],which do not lead
to a well defined transverse mode. Since any
optical ray is imaged back onto itself after
one cavity round trip, there is no preferred
optical axis. Diffraction effects will lead
inevitably to high losses for rays which
propagate far from the optical axis, however,
there still exist a large number of possible
modes, all with very similar losses. In this
paper we show how to actively define the
optical axis in such a self-imaging resonator
by placing saturable photorefractive gain
and loss nonlinearities in conjugate
resonator planes. The transverse profile
maximizes the oscillating power by
saturating the photorefractive gain as little as
possible, and saturating the photorefractive
loss as much as possible. The resulting
transverse mode turns out to be highly
localized, but with an arbitrary axis of
propagation inside the resonator.

The single transverse mode ring resonator
with photorefractive gain and loss has been
shown to exhibit bistability and self-
pulsing[2]. The interesting dynamical
behavior in this system 1is due to the
competitive interaction of the gain and the
loss. On the other hand, in the imaging
resonator with a continuum of transverse
modes, the interaction of the gain and the
loss assumes a cooperative character in the

following sense. >uppose the nscillation
mode can be approximated by a Gaussian.
Then its Fourier transform is also a Gaussian
with a width inversely proportional to the
input Gaussian. Place a photorefractive
saturable gain nonlinearity, which tends to
broaden a Gaussian field, in one plane, and
the complementary photorefractive saturable
loss nonlinearity, which tends to narrow a
Gaussian field, in the conjugate plane. Thus
both nonlinearities cooperate to encourage
the formation of a narrow Gaussian in the
plane of the loss medium. Combining this
spatial dynamics with the bistability of the
gain and loss configuration leads to the
formation of a single well confined mode,
and the suppression of all other transverse
.nodes. Alternatively, the gain and loss
interactions could be placed in image planes.
In this case the interactions compete
spatially. The gain tends to suppress any
local intensity gradients, and the loss tends
to amplify any intensity gradients. There is
no localized solution that satisfies both
nonlinearities and the result is a spatially
periodic transverse pattern.

We have demonstrated transverse modc
collapse in the self-imaging ring oscillator
shown in Fig. 1. Energy 1s transferred to the
resonator by two-beam coupling in
photorefractive BaTiOj crystals. One of the
crystals, located in the plane labelled G, is
oriented to provide gain to the oscillating
beam. The second crystal, located in the
conjugate plane L, is oriented to provide loss
to the oscillating beam. The gain pumpis a

TEMg Gaussian with spot size w_, where

w, =~JAf/n is the confocal mode size of




Fig. 1. Imaging ring resonator with photorefractive
gain and loss. All lenses are f=100 mm with a spacing
of 2f. The gain and loss pumps are from a cw Argon
laser, A=514 nm.

the equivalent linear resonator. The loss
pump beam is an apertured plane wave with
diameter of about 7 mm. The transverse
extent of the oscillation is limited by a
circular iris in plane L with a diameter
slightly less than 7 mm, which gives an
equivalent Fresnel number in terms of the
fundamental confocal mode, of about 750.

Consider first the situation when only the
gain pump is turned on (Fig. 2, framel). The
position of the oscillating mode in plane G
is fixed by the pump beam, however its
direction of propagation is undetermined
since, for the chosen geometry, the
photorefractive gain varies only slowly with
small angular changes. In plane L the
oscillating mode fills the iris aperture with a
speckle like structure. The oscillation
constantly changes in a turbulent fashicn, as
has been studied in detail by Arecchi, et.
al.[3]. If the round trip magnification differs
from unity, or there is some offset or tilt in
the cavity alignment then the oscillation
does not fill the aperture uniformly, but
instead assumes a transverse pattern
indicative of the round trip equiphase
contours. With careful alignment less than
one fringe was visible across the transverse
aperture.

The loss pump is then turned on. The gain
and loss coupling coefficients and pump
intensities would put the corresponding
single-mode resonator in the bistable

L

regime[2]. The oscillating field observed in
plane I. collapses down 1o the singie near-
Gaussian mode shown in Fig. 2 frame 9. The
mode size was measured to be roughly 2 we.
The transverse position of the mode depends
on the inital conditions, and can be seen at
any transverse location. However, the mode
is not spatially stable and moves about the
aperture. A series of pictures would show
the mode to traverse the aperture in the
space of a few seconds. Interestingly, the
mode does net wander randomly, but rather
tends to repeatedly traverse a fixed
trajectory. Typically the mode will appear
on the side of the aperture where the gain is
highest due to transverse pump depletion
effects[4], and then move away along a
direction determined by the cavity
alignment. Depending on the details of the
cavity alignment, and the gain and loss
pump intensities, the spot either moves away
to the edge of the aperture and disappears
before reappearing again in its original
position, or else it executes a cyclic motion
wholly within the aperture. In the latter case
the spot does not move in a closed circle but
rather appears, moves a short distance, and
then disappears, before repeating its motion.

Fig. 2. Collapse of the transverse mode structure.
Each frame shows an image of the gain plane on the
left and the loss plane on e right. Each frame 1s
separated by 1/30 sec.

We now turn to a model of the observed
behavior. It is common, when analyzing the
interaction of atomic or Kerr media with
radiation fields, to eliminate the rapidly
relaxing matter variables in favoi of the slow
field variables. When dealing with
photorefractively pumped resonators the

\ ]




situation, however, is reversed. For typical
experimental energy densities of 10 W/cm?
the medium relaxation time in BaTiO3 is of
order 0.1 sec., whereas the field relaxes in

order 10-8 sec. Therefore the appropriate
description of the photorefractive resonator
dynamics is in terms of the matter variables,
i.e. the photoinduced gratings. In the limit
of weak gratings the resulting equations can
be approximated to yield a set of Lotka-
Volierra type equations for the grating
amplitudes. These equations describe the
transient small signal behavior, but they are
not valid in the strong signal regime where
the photorefractive coupling is saturated.

To gain insight into the observed behavior
without resorting to lengthy numerical
calculations we have performed iterative
calculations of the oscillating field in the
nonphysical limit of medium relaxation time
much shorter than field relaxation time.
While the results so obtained s~y nothing
about the dynamic stability of the system,
they do converge to self consistent solutions
for the field profile, in the spirit of Fox and
Li[5].

An example of the results is shown in Fig. 3.
The calculation starts by assuming some
initial distribution in plane L. In each
iteration the field is Fourier transformed,
propagated through the gain crystal, Fourier
transformed again, propagated through the
loss crystal, and multiplied by the passive
cavity losses. The propagation in the
photorefractive media is calculated by
assuming thin crystals such that there is no
direct coupling between different oscillating
modes. The field rapidly converges to a near
Gaussian distribution, which mimics the
pump profile, and minimizes the gain
saturation in plane G, and a localized spot
which maximizes the loss saturation in plane
L. The location of the steady state spot
coincides with the peak of the assumed
initial conditions.

These calculations also lend some insight
into the transverse stability of the oscillating
mode. The steady state spatial profiles of the
gain ~nd loss gratings are shown in Fig. 4,
where the grating angle which determines
the two-beam coupling rotation matnix[6]

P34
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has been plotted as a function of the
transverse coordinate. It can be seen that the
loss grating has a local minimum. This
servas to stabilize the transverse field
profile, since fluctuations away from the
center of the oscillating mode sce increased
loss. However, the stability of the gain and
loss gratings themselves can not be
determined from these calculations. In fact
our experimental observations indicate thut
the oscillating mode stays localized while
moving in the loss plane. This moiion
corresponds to a change in the phase shift
across the gain grating and a simultancous
translation of the loss grating. Approaches 1o
spatial stabilization of the oscillating mode,
based on additional nonlinear interactions,
are currently being investigated.
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